Theory of machinery

Chapter five

Dynamics Forces Analysis

By
Laith Batarseh

Dynamics Forces Analysis

Static analysis

It is required to determine the input load due to a known output load, and it is necessary to determine the joints forces for the purpose of design and selection of mechanism components

Procedures

1- Draw free body diagram for each link
2- Write static equilibrium equations
3- Solve for the known reactions and driving loads

Dynamics Forces Analysis

4- bars Mech.

Given 4-bar shown T_{2} is the driving torque and T_{4} is the output load, find T_{4} in terms of T_{2} and the pin reactions

Dynamics Forces Analysis

4- bars Mech.

first the free body diagram for each link

Dynamics Forces Analysis

S.E.E (static equilibrium equations)

Link 2:
F.B.D

Dynamics Forces Analysis

S.E.E (static equilibrium equations)

Link 2: Equilibrium equations

To find the reactions at point O_{2} and force F_{32}, we can apply the equilibrium equations

$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow R_{O 2, x}-F_{32} \cos \left(\theta_{3}\right)=0---(1) \\
& \sum F_{y}=0 \Rightarrow R_{O 2, y}-F_{32} \sin \left(\theta_{3}\right)=0---(2) \\
& \sum M_{O 2}=0 \Rightarrow T_{2}+F_{32} \cos \left(\theta_{3}\right)\left(d_{2}\right) \sin \left(\theta_{2}\right)-F_{32} \sin \left(\theta_{3}\right)\left(d_{2}\right) \cos \left(\theta_{2}\right)=0---(3) \\
& \text { or } T_{2}=F_{32} \sin \left(\theta_{3}\right)\left(d_{2}\right) \cos \left(\theta_{2}\right)-F_{32} \cos \left(\theta_{3}\right)\left(d_{2}\right) \sin \left(\theta_{2}\right)
\end{aligned}
$$

$$
\text { But, } \sin \left(\Theta_{3}\right) \cos \left(\Theta_{2}\right)-\cos \left(\Theta_{3}\right) \sin \left(\Theta_{2}\right)=\sin \left(\Theta_{3}-\Theta_{2}\right) \text {. So, } T_{2} \text { can be found as: }
$$

$$
T_{2}=F_{32} d_{2} \sin \left(\theta_{3}-\theta_{2}\right)
$$

Dynamics Forces Analysis

S.E.E (static equilibrium equations)

Link 3:

Link 3 is considered as two forces member since it carry the force from the input link to the output link
The equilibrium equation for such case is shown in Eq.4:

$$
F_{43}=F_{23}---(4)
$$

$$
F_{43}
$$

Dynamics Forces Analysis

S.E.E (static equilibrium equations)
Link 4:
F.B.D

Dynamics Forces Analysis

Link 4:

Before starting the solution, a Trigonometrical Ratios must be mentioned which couple Θ with $180-\Theta$:

$$
\sin (180-\theta)=\sin (\theta) \text { and } \cos (180-\theta)=-\cos (\theta)
$$

And because $\Theta^{*}{ }_{4}=180-\Theta_{4}, \sin \left(\Theta^{*}{ }_{4}\right)=\sin \left(\Theta_{4}\right)$ and $\cos \left(\theta^{*}{ }_{4}\right)=-\cos \left(\Theta_{4}\right)$
Now, the equilibrium equations can be found as:

$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow R_{O 4, x}+F_{34} \cos \left(\theta_{3}\right)=0---(5) \\
& \sum F_{y}=0 \Rightarrow R_{O 4, y}-F_{34} \sin \left(\theta_{3}\right)=0---(6) \\
& \sum M_{O 2}=0 \Rightarrow-T_{4}-F_{34} d_{4} \cos \left(\theta_{3}\right) \sin \left(\theta_{4}^{*}\right)-F_{34} d_{4} \sin \left(\theta_{3}\right) \cos \left(\theta_{4}^{*}\right)=0 \\
& \Rightarrow-T_{4}+F_{34} d_{4}\left[\sin \left(\theta_{3}\right) \cos \left(\theta_{4}\right)-\cos \left(\theta_{3}\right) \sin \left(\theta_{4}\right)\right]=0---(7)
\end{aligned}
$$

But, $\sin \left(\Theta_{3}\right) \cos \left(\Theta_{4}\right)-\cos \left(\Theta_{3}\right) \sin \left(\Theta_{4}\right)=\sin \left(\Theta_{3}-\Theta_{4}\right)$. So, T_{2} can be found as:

$$
T_{4}=F_{32} d_{4} \sin \left(\theta_{3}-\theta_{4}\right)
$$

Dynamics Forces Analysis

S.E.E (static equilibrium equations)

Finally

Relates the torques founded from Eqs 3 and 7

$$
\begin{gathered}
T_{2}=F_{32} d_{2} \sin \left(\theta_{3}-\theta_{2}\right) \quad T_{4}=F_{32} d_{4} \sin \left(\theta_{3}-\theta_{4}\right) \\
\frac{T_{4}}{T_{2}}=\frac{F_{32} d_{4} \sin \left(\theta_{3}-\theta_{4}\right)}{F_{32} d_{2} \sin \left(\theta_{3}-\theta_{2}\right)}=\frac{d_{4} \sin \left(\theta_{3}-\theta_{4}\right)}{d_{2} \sin \left(\theta_{3}-\theta_{2}\right)}=\frac{\omega_{2}}{\omega_{4}}
\end{gathered}
$$

The previous conclusion between the torques ratio and velocities ratio can be proofed if we assume there are no losses among the power transition between the input and output links (i.e. $P_{2}=P_{4}$).

If $\mathrm{P}_{2}=\mathrm{P}_{4}$, then $T_{2} \omega_{2}=T_{4} \omega_{4}$ or $T_{4} / T_{2}=\omega_{2} / \omega_{4}$.

Dynamics Forces Analysis

Slider crank mechanism

$>\operatorname{Input} \mathrm{T}_{2}$, relate T_{2} to Fs and find the pin reactions

Dynamics Forces Analysis

Slider crank mechansim

\Rightarrow Input T_{2} is input, relate T_{2} to Fs and find the pin reactions
\Rightarrow Link 2: $\sum F_{x}=R_{o 2 x}-F_{32} \cos \left(\theta_{3}\right)=0---(1) ; \sum F_{y}=R_{o 2 y}-F_{32} \sin \left(\theta_{3}\right)=0---(2)$

$$
T_{2}=-F_{32} d_{2} \sin \left(\theta_{3}-\theta_{2}\right)---(3)
$$

\Rightarrow Link 3: $\mathrm{F}_{43}=\mathrm{F}_{23}=\mathrm{F}_{32}----(4)$
\Rightarrow Link 4: $\Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{s}}-\mathrm{F}_{34} \cos \left(\theta_{3}\right)=0$

$$
\begin{equation*}
\sum F_{y}=F_{34} \sin \left(\theta_{3}\right)+R s=0 \tag{5}
\end{equation*}
$$

\Rightarrow We have 6 unknown with 6 equations solve them to find the unknown (F_{s}, F_{32}, $\left.R_{o 2 x}, R_{02 y}, F_{34}, R_{s}\right)$

Dynamics Forces Analysis

Dynamic analysis

It is required to find the dynamic reactions at the joints and the driving forces or torques for given mechanism parameters and loads

```
Given :
1- configuration
2- dimensions
3- location of fixed pivots and plats
4- inertial parameters
5- loads
```


Procedures :

1- Free body diagram with inertial loads ($\Sigma \mathrm{F}=\mathrm{ma}$)
2- Write the dynamic equilibrium equations
3-Solve for the unknown forces and reactions

Dynamics Forces Analysis

Dynamic analysis

4-bar mechanism

link 2:

Dynamics Forces Analysis

Dynamics Forces Analysis

link 2:

$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow R_{O 2, x}-F_{32, x}=M_{2} \ddot{r}_{2 x}---(1) \\
& \sum F_{y}=0 \Rightarrow R_{O 2, y}-F_{32, y}-M_{2} g=M_{2} \ddot{r}_{2 y}---(2) \\
& \sum M_{O 2}=T_{2}+F_{32, x}\left(d_{2}\right) \sin \left(\theta_{2}\right)-F_{32, y}\left(d_{2}\right) \cos \left(\theta_{2}\right)-m_{2} g r_{2} \cos \left(\theta_{2}+\beta_{2}\right) \\
& \quad=I_{2} \alpha_{2}-M_{2} \ddot{r}_{2 x} r_{2} \sin \left(\theta_{2}+\beta_{2}\right)+M_{2} \ddot{r}_{2 y} r_{2} \cos \left(\theta_{2}+\beta_{2}\right)--(3) \\
& \mathbf{r}_{2}=r_{2} U_{\theta_{2}+\beta_{2}} \\
& \dot{\mathbf{r}}_{2}=r_{2} \omega_{2} \dot{U}_{\theta_{2}+\beta_{2}} \\
& \ddot{\mathbf{r}}_{2}=r_{2} \alpha_{2} \dot{U}_{\theta_{2}+\beta_{2}}-r_{2} \omega_{2}^{2} U_{\theta_{2}+\beta_{2}} \\
& \ddot{\mathbf{r}}_{2, x}=-r_{2} \alpha_{2} \sin \left(\theta_{2}+\beta_{2}\right)-r_{2} \omega_{2}^{2} \cos \left(\theta_{2}+\beta_{2}\right) \\
& \ddot{\mathbf{r}}_{2, y}=r_{2} \alpha_{2} \cos \left(\theta_{2}+\beta_{2}\right)-r_{2} \omega_{2}^{2} \sin \left(\theta_{2}+\beta_{2}\right)
\end{aligned}
$$

Dynamics Forces Analysis

link 3:

$$
\begin{aligned}
& F_{32, x}-F_{43, x}=M_{3} \ddot{r}_{c 3, x}---(4) \\
& F_{32, y}-F_{43, y}-M_{3} g=M_{3} \ddot{r}_{c 3, y}---(5) \\
& \sum M_{B}=F_{23, x}\left(d_{3}\right) \sin \left(\theta_{3}\right)-F_{23, y}\left(d_{3}\right) \cos \left(\theta_{3}\right)+M_{3} g\left(d_{3} \cos \left(\theta_{3}\right)-r_{3} \cos \left(\theta_{3}+\beta_{3}\right)\right) \\
& \quad=I_{3} \alpha_{3}+M_{3} \ddot{r}_{3 c, x}\left[d_{3} \sin \left(\theta_{3}\right)-r_{3} \sin \left(\theta_{2}+\beta_{2}\right)\right] \\
& \quad-M_{3} \ddot{r}_{3 c, y}\left[d_{3} \cos \left(\theta_{3}\right)-r_{3} \cos \left(\theta_{3}+\beta_{3}\right)\right]---(6)
\end{aligned}
$$

$$
r_{c 3}=d_{2} U_{\theta_{2}}+r_{3} U_{\theta_{3}+\beta_{3}}
$$

Exercise:- Find the dynamic analysis for link 4

